Atmospheric Baseline Observatories

Brian Vasel
Director of Observatory Operations

Backbone of Global Networks

Barrow (BRW)
Elevation: 11m 71.3° N Latitude

American Samoa (SMO)
Elevation: 42m 14.2° S Latitude

Mauna Loa (MLO)
Elevation: 3397m 19.5° N Latitude

South Pole (SPO)
Elevation: 2840m 90° S Latitude

Observatory Operations Philosophy

ABOs enable and support Science → **Science drives decisions**

- Stewardship Build upon foundation of high-quality observations for over 45 years, continue "national treasure" legacy
- Customer Service Plug and play remote field operations for researchers
- **Resources Tool Kit** Provide highly skilled workforce & core of supporting measurements (metadata) at each observatory. Updated meteorology, web cams, all-sky imagery, ceilometers, etc.
- **Efficiency** Thrifty and resourceful operations; every dollar for operations is a dollar less for science
- Innovation Expand and enhance the use of renewable technology, modernize instrumentation
- Platform for Growth Dependable observatory resources + co-location of measurements = increase in interagency & interdisciplinary science collaboration
 - Promotion of observatory platform to audiences external to GMD (Other NOAA line offices, Federal partners, & University Pls)

ABO Historical and Relational Significance

Staff Collaboration

- Federal
- CIRES & JIMAR (Cooperative Institutes)
- STC contractors
- NOAA Corps Officers
 2-3 officers assigned to GMD at any given time

Longevity

- MLO and SPO records date back to 1956 and 1957 (IGY)
- BRW records begin in 1973, SMO in 1974
- First Geophysical Monitoring for Climatic Change (GMCC) Summary Report (1972) "... data are collected by a few observatories whose location ... chosen to sample representative latitudes within both hemispheres ... where local man-made or biota interferences are minimal."
 - First priority is placed on the collection of impeccable measurements of trace constituents."
- WMO Global Atmospheric Watch (GAW) network modeled on ABOs

Mauna Loa Dedication June 28, 1956

ABOs - Home of Scientifically Renowned Records

ABO Stats

- Total Peer-reviewed Publications using ABO datasets: 6,307
- 2251 Peer-reviewed Publications Since 2013 Review!
- GMD Data Sets: 775
- Staff: 16
- Vehicle Fleet: 7
- Total Acreage: 135
- Miles of Driveway: 19
- Cooperative Research Projects: 70

Ozonesonde balloon time-lapse at SPO

- Solar Power: 165 panels (SMO = 33% and MLO = 20% of daytime demand)
- Total Structures: 67

Operational Challenges

Operating Field Sites in remote locations poses unique challenges...

- Tight procurement & shipping timelines
- Dirty power
- Cultural considerations
- Natural disasters
- Extreme climates
- Clean Air Sector management
- NEPA & State Historic Preservation Office (SHPO) requirements
- Training of observatory personnel to provide reliable science support workforce
- Infrastructure maintenance

Mauna Loa Observatory from tower

Facility Deferred Maintenance

BRW – April 2015

• "...the Observatory is in poor condition and appears to have outlived its useful life." Executive Summary, Page 10

SMO – April 2017

• "... the Observatory Site is in Poor condition and is rated as a D... condition is still somewhat adequate, but the assets are headed toward the latter half of their lifecycle." Executive Summary, Page 4

MLO – June 2017

• "... the Observatory is in working order, however, OAR should plan for upcoming capital costs related to component renewals." Executive Summary, Page 7

Total = \$1.8M in deferred maintenance projects

Keeping the Lights On

Simple Math

- Inflation: Increasing Cost of Business
- Steady Science Mission
- Flat Observatory Budget
- Increasingly Difficult to Manage

Prioritized Investments

- Life/facility safety
- Failures/repairs
- Improvements

Critical Mass

- Infrastructure investment essential to service science & maintain quality
- Science suffers without dependable resources

Cyclone Gita Damage at SMO February 2018

Considerations for THD & SUM

Hard Decisions

No longer support Trinidad Head, CA (THD) or Summit, Greenland (SUM) as NOAA "Atmospheric Baseline Observatories". However, still have critical measurements at each site.

- Rationale for sites & impact to partners
- Current facilities & planned upgrades
- Local influences vs. background? Science requirements...
- Efficiency logistics requirements for each project:
 - Removed cargo/staff intensive projects
 - Kept low maintenance/power projects
- Ongoing Measurements: THD
 Aircraft flasks
 HATS flasks
 HATS flasks
 Ozonesondes
 Sum
 Aerosol suite
 Sum
 Aerosol suite
 Surface ozone

Trinidad Head, CA

New York ANG LC-130 at SUM

Cooperative Research Projects

Currently ~70 projects across the observatory network are supported

- 1. Management process redesigned for cooperative projects to leverage Google platform benefits:
 - Email, calendar, forms, drive storage, and secure sharing to field sites

- 2. New & improved external support webpage created to enhance information sharing with partners, to include:
 - New request/renewal process
 - Logistics
 - Site access,
 - Fee structure, etc.
- We currently bring in \$250K in reimbursable funds from partners

Near Term Observatory Goals

Efficiency – Greening the Observatories:

- Renewable energy
- LED Lighting 2018 DOC Green Grant

Building on Partnerships:

- Hilo office (NWS)
- USCG flight/cargo support
- NSF Office of Polar Programs (Arctic & Antarctic)
- Cooperative Projects
- Australia BOM/CSIRO staff training & exchange

Investment in Science:

- New Barrow Observatory Main Building
- New ARO at South Pole
- Additional land buffer at Mauna Loa
- NOTAMs for CAS no-fly zones
- Increase project cost reimbursements

Solar Panels installed at MLO

Observatory Take Away

- Unique to OAR and NOAA
- Effective Spending
- Collaboration
- Innovation and Evolution
- Maintenance of Global Leadership
- Expand relevance to meet societal need

World-class science demands world-class facilities

Our Bi-Polar Observatory Team Thanks You!

Sunrise at the Barrow Atmospheric Baseline Observatory – Vernal Equinox

March 21st, 2018 <

Sunset at the South
Pole Atmospheric
Baseline Observatory
– Autumnal Equinox

Questions?

The Night Sky over South Pole Station

Observatory Relevant GMAC Presentations:

- Oral Session 3 Morris
- Oral Session 3 Cox
- Oral Session 4 Johnson
- Oral Session 4 Petropavlovskikh
- Oral Session 4 Witte
- Oral Session 8 Davis

- Poster 2 Williams
- Poster 3 Ivey
- Poster 35 He
- Poster 43 –Barnes
- Poster 44 Shiobara
- Poster 48 Disterhoft

- Poster 54 Sun
- Poster 70 Dix
- Poster 71 Koenig
- Poster 74 McClure-Begley
- + 14 additional

